A non-residually solvable hyperlinear one-relator group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost All One-relator Groups with at Least Three Generators Are Residually Finite

We prove that with probability tending to 1, a 1-relator group with at least 3 generators and the relator of length n is residually finite, virtually residually (finite p)-group for all sufficiently large p, and coherent. The proof uses both combinatorial group theory and non-trivial results about Brownian motions.

متن کامل

On One-relator Inverse Monoids and One-relator Groups

It is known that the word problem for one-relator groups and for one-relator monoids of the form Mon〈A ‖ w = 1〉 is decidable. However, the question of decidability of the word problem for general one-relation monoids of the form M = Mon〈A ‖ u = v〉 where u and v are arbitrary (positive) words in A remains open. The present paper is concerned with one-relator inverse monoids with a presentation o...

متن کامل

A Minimal Non-solvable Group of Homeomorphisms

Let PL0(I) represent the group of orientation-preserving piecewise-linear homeomorphisms of the unit interval which admit finitely many breaks in slope, under the operation of composition. We find a non-solvable groupW and show thatW embeds in every non-solvable subgroup of PL0(I). We find mild conditions under which other non-solvable subgroups (B, (≀Z≀), (Z≀), and (≀Z)) embed in subgroups of ...

متن کامل

On one-relator quotients of the modular group

We investigate the modular group as a finitely presented group. It has a large collection of interesting quotients. In 1987 Conder substantially identified the onerelator quotients of the modular group which are defined using representatives of the 300 inequivalent extra relators with length up to 24. We study all such quotients where the extra relator has length up to 36. Up to equivalence, th...

متن کامل

Automorphisms of One-relator Groups

It is a well-known fact that every group G has a presentation of the form G = F/R, where F is a free group and R the kernel of the natural epimorphism from F onto G. Driven by the desire to obtain a similar presentation of the group of automorphisms Aut(G), we can consider the subgroup Stab(R) ⊆ Aut(F ) of those automorphisms of F that stabilize R, and try to figure out if the natural homomorph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2011

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-2010-10668-8